Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.424
Filter
1.
Aging (Albany NY) ; 16(7): 6550-6565, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38604154

ABSTRACT

BACKGROUND: The treatment and prognosis of patients with advanced hepatocellular carcinoma (HCC) have been a major medical challenge. Unraveling the landscape of tumor immune infiltrating cells (TIICs) in the immune microenvironment of HCC is of great significance to probe the molecular mechanisms. METHODS: Based on single-cell data of HCC, the cell landscape was revealed from the perspective of TIICs. Special cell subpopulations were determined by the expression levels of marker genes. Differential expression analysis was conducted. The activity of each subpopulation was determined based on the highly expressed genes. CTLA4+ T-cell subpopulations affecting the prognosis of HCC were determined based on survival analysis. A single-cell regulatory network inference and clustering analysis was also performed to determine the transcription factor regulatory networks in the CTLA4+ T cell subpopulations. RESULTS: 10 cell types were identified and NK cells and T cells showed high abundance in tumor tissues. Two NK cells subpopulations were present, FGFBP2+ NK cells, B3GNT7+ NK cells. Four T cells subpopulations were present, LAG3+ T cells, CTLA4+ T cells, RCAN3+ T cells, and HPGDS+ Th2 cells. FGFBP2+ NK cells, and CTLA4+ T cells were the exhaustive subpopulation. High CTLA4+ T cells contributed to poor prognostic outcomes and promoted tumor progression. Finally, a network of transcription factors regulated by NR3C1, STAT1, and STAT3, which were activated, was present in CTLA4+ T cells. CONCLUSION: CTLA4+ T cell subsets in HCC exhibited functional exhaustion characteristics that probably inhibited T cell function through a transcription factor network dominated by NR3C1, STAT1, and STAT3.


Subject(s)
Carcinoma, Hepatocellular , Killer Cells, Natural , Liver Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Tumor Microenvironment/immunology , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Prognosis , Gene Expression Regulation, Neoplastic , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
2.
Cell Rep ; 43(4): 114089, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38615318

ABSTRACT

Although natural killer (NK) cells are recognized for their modulation of immune responses, the mechanisms by which human NK cells mediate immune regulation are unclear. Here, we report that expression of human leukocyte antigen (HLA)-DP, a ligand for the activating NK cell receptor NKp44, is significantly upregulated on CD8+ effector T cells, in particular in human cytomegalovirus (HCMV)+ individuals. HLA-DP+ CD8+ T cells expressing NKp44-binding HLA-DP antigens activate NKp44+ NK cells, while HLA-DP+ CD8+ T cells not expressing NKp44-binding HLA-DP antigens do not. In line with this, frequencies of HLA-DP+ CD8+ T cells are increased in individuals not encoding for NKp44-binding HLA-DP haplotypes, and contain hyper-expanded CD8+ T cell clones, compared to individuals expressing NKp44-binding HLA-DP molecules. These findings identify a molecular interaction facilitating the HLA-DP haplotype-specific editing of HLA-DP+ CD8+ T cell effector populations by NKp44+ NK cells and preventing the generation of hyper-expanded T cell clones, which have been suggested to have increased potential for autoimmunity.


Subject(s)
CD8-Positive T-Lymphocytes , Killer Cells, Natural , Natural Cytotoxicity Triggering Receptor 2 , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Natural Cytotoxicity Triggering Receptor 2/metabolism , Cytomegalovirus/immunology , Haplotypes , Lymphocyte Activation/immunology
3.
Cell Rep ; 43(4): 114105, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38619967

ABSTRACT

Natural killer (NK) cells are primary defenders against cancer precursors, but cancer cells can persist by evading immune surveillance. To investigate the genetic mechanisms underlying this evasion, we perform a genome-wide CRISPR screen using B lymphoblastoid cells. SPPL3, a peptidase that cleaves glycosyltransferases in the Golgi, emerges as a top hit facilitating evasion from NK cytotoxicity. SPPL3-deleted cells accumulate glycosyltransferases and complex N-glycans, disrupting not only binding of ligands to NK receptors but also binding of rituximab, a CD20 antibody approved for treating B cell cancers. Notably, inhibiting N-glycan maturation restores receptor binding and sensitivity to NK cells. A secondary CRISPR screen in SPPL3-deficient cells identifies B3GNT2, a transferase-mediating poly-LacNAc extension, as crucial for resistance. Mass spectrometry confirms enrichment of N-glycans bearing poly-LacNAc upon SPPL3 loss. Collectively, our study shows the essential role of SPPL3 and poly-LacNAc in cancer immune evasion, suggesting a promising target for cancer treatment.


Subject(s)
Killer Cells, Natural , Polysaccharides , Humans , Polysaccharides/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Amino Sugars/metabolism , Genomics/methods , Rituximab/pharmacology , Rituximab/metabolism , Cell Line, Tumor
4.
Front Immunol ; 15: 1341013, 2024.
Article in English | MEDLINE | ID: mdl-38655263

ABSTRACT

Recombinant Factor VIII-Fc fusion protein (rFVIIIFc) is an enhanced half-life therapeutic protein product used for the management of hemophilia A. Recent studies have demonstrated that rFVIIIFc interacts with Fc gamma receptors (FcγR) resulting in the activation or inhibition of various FcγR-expressing immune cells. We previously demonstrated that rFVIIIFc, unlike recombinant Factor IX-Fc (rFIXFc), activates natural killer (NK) cells via Fc-mediated interactions with FcγRIIIA (CD16). Additionally, we showed that rFVIIIFc activated CD16+ NK cells to lyse a FVIII-specific B cell clone. Here, we used human NK cell lines and primary NK cells enriched from peripheral blood leukocytes to study the role of the FVIII moiety in rFVIIIFc-mediated NK cell activation. Following overnight incubation of NK cells with rFVIIIFc, cellular activation was assessed by measuring secretion of the inflammatory cytokine IFNγ by ELISA or by cellular degranulation. We show that anti-FVIII, anti-Fc, and anti-CD16 all inhibited indicating that these molecules were involved in rFVIIIFc-mediated NK cell activation. To define which domains of FVIII were involved, we used antibodies that are FVIII domain-specific and demonstrated that blocking FVIII C1 or C2 domain-mediated membrane binding potently inhibited rFVIIIFc-mediated CD16+ NK cell activation, while targeting the FVIII heavy chain domains did not. We also show that rFVIIIFc binds CD16 with about five-fold higher affinity than rFIXFc. Based on our results we propose that FVIII light chain-mediated membrane binding results in tethering of the fusion protein to the cell surface, and this, together with increased binding affinity for CD16, allows for Fc-CD16 interactions to proceed, resulting in NK cellular activation. Our working model may explain our previous results where we observed that rFVIIIFc activated NK cells via CD16, whereas rFIXFc did not despite having identical IgG1 Fc domains.


Subject(s)
Factor VIII , Immunoglobulin Fc Fragments , Killer Cells, Natural , Lymphocyte Activation , Receptors, IgG , Recombinant Fusion Proteins , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Factor VIII/immunology , Receptors, IgG/metabolism , Receptors, IgG/immunology , Lymphocyte Activation/immunology , Lymphocyte Activation/drug effects , Immunoglobulin Fc Fragments/immunology , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Cell Degranulation/immunology , Interferon-gamma/metabolism , Protein Binding , Hemophilia A/immunology , Hemophilia A/drug therapy
5.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38661718

ABSTRACT

Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.


Subject(s)
Cell Communication , Chemokine CCL3 , Killer Cells, Natural , Muromegalovirus , Protein Biosynthesis , Transcription, Genetic , Animals , Mice , Muromegalovirus/physiology , Chemokine CCL3/metabolism , Chemokine CCL3/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Genes, Reporter , Mice, Inbred C57BL , Herpesviridae Infections/immunology , Herpesviridae Infections/genetics , Mice, Transgenic , Interferon Type I/metabolism , Signal Transduction
6.
Front Immunol ; 15: 1360615, 2024.
Article in English | MEDLINE | ID: mdl-38646521

ABSTRACT

Introduction: Malignant ascites indicates ovarian cancer progression and predicts poor clinical outcome. Various ascites components induce an immunosuppressive crosstalk between tumor and immune cells, which is poorly understood. In our previous study, imbalanced electrolytes, particularly high sodium content in malignant ascites, have been identified as a main immunosuppressive mechanism that impaired NK and T-cell activity. Methods: In the present study, we explored the role of high concentrations of ascites proteins and immunoglobulins on antitumoral NK effector functions. To this end, a coculture system consisting of healthy donor NK cells and ovarian cancer cells was used. The anti-EGFR antibody Cetuximab was added to induce antibody-dependent cellular cytotoxicity (ADCC). NK activity was assessed in the presence of different patient ascites samples and immunoglobulins that were isolated from ascites. Results: Overall high protein concentration in ascites impaired NK cell degranulation, conjugation to tumor cells, and intracellular calcium signaling. Immunoglobulins isolated from ascites samples competitively interfered with NK ADCC and inhibited the conjugation to target cells. Furthermore, downregulation of regulatory surface markers CD16 and DNAM-1 on NK cells was prevented by ascites-derived immunoglobulins during NK cell activation. Conclusion: Our data show that high protein concentrations in biological fluids are able to suppress antitumoral activity of NK cells independent from the mechanism mediated by imbalanced electrolytes. The competitive interference between immunoglobulins of ascites and specific therapeutic antibodies could diminish the efficacy of antibody-based therapies and should be considered in antibody-based immunotherapies.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Ascites , Killer Cells, Natural , Ovarian Neoplasms , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Ascites/immunology , Female , Antibody-Dependent Cell Cytotoxicity/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Immunoglobulins/metabolism , Receptors, IgG/metabolism , Receptors, IgG/immunology , Cell Degranulation/immunology , Cell Degranulation/drug effects , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Cetuximab/pharmacology
7.
Mol Biol Rep ; 51(1): 571, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662155

ABSTRACT

Leukemia is a malignancy of the bone marrow and blood originating from self-renewing cancerous immature blast cells or transformed leukocytes. Despite improvements in treatments, leukemia remains still a serious disease with poor prognosis because of disease heterogeneity, drug resistance and relapse. There is emerging evidence that differentially expression of co-signaling molecules play a critical role in tumor immune evasion. Galectin-9 (Gal-9) is one of the key proteins that leukemic cells express, secrete, and use to proliferate, self-renew, and survive. It also suppresses host immune responses controlled by T and NK cells, enabling leukemic cells to evade immune surveillance. The present review provides the molecular mechanisms of Gal-9-induced immune evasion in leukemia. Understanding the complex immune evasion machinery driven by Gal-9 expressing leukemic cells will enable the identification of novel therapeutic strategies for efficient immunotherapy in leukemic patients. Combined treatment approaches targeting T-cell immunoglobulin and mucin domain-3 (Tim-3)/Gal-9 and other immune checkpoint pathways can be considered, which may enhance the efficacy of host effector cells to attack leukemic cells.


Subject(s)
Cell Transformation, Neoplastic , Galectins , Hepatitis A Virus Cellular Receptor 2 , Leukemia , Humans , Galectins/metabolism , Leukemia/immunology , Hepatitis A Virus Cellular Receptor 2/metabolism , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/genetics , Animals , Immune Tolerance , Signal Transduction , Tumor Escape , Cell Proliferation , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism
8.
Front Immunol ; 15: 1232070, 2024.
Article in English | MEDLINE | ID: mdl-38638443

ABSTRACT

Chronic liver diseases, such as non-alcoholic steatohepatitis (NASH)-induced cirrhosis, are characterized by an increasing accumulation of stressed, damaged, or dying hepatocytes. Hepatocyte damage triggers the activation of resident immune cells, such as Kupffer cells (KC), as well as the recruitment of immune cells from the circulation toward areas of inflammation. After infiltration, monocytes differentiate into monocyte-derived macrophages (MoMF) which are functionally distinct from resident KC. We herein aim to compare the in vitro signatures of polarized macrophages and activated hepatic stellate cells (HSC) with ex vivo-derived disease signatures from human NASH. Furthermore, to shed more light on HSC activation and liver fibrosis progression, we investigate the effects of the secretome from primary human monocytes, macrophages, and NK cells on HSC activation. Interleukin (IL)-4 and IL-13 treatment induced transforming growth factor beta 1 (TGF-ß1) secretion by macrophages. However, the supernatant transfer did not induce HSC activation. Interestingly, PMA-activated macrophages showed strong induction of the fibrosis response genes COL10A1 and CTGF, while the supernatant of IL-4/IL-13-treated monocytes induced the upregulation of COL3A1 in HSC. The supernatant of PMA-activated NK cells had the strongest effect on COL10A1 induction in HSC, while IL-15-stimulated NK cells reduced the expression of COL1A1 and CTGF. These data indicate that other factors, aside from the well-known cytokines and chemokines, might potentially be stronger contributors to the activation of HSCs and induction of a fibrotic response, indicating a more diverse and complex role of monocytes, macrophages, and NK cells in liver fibrosis progression.


Subject(s)
Kupffer Cells , Non-alcoholic Fatty Liver Disease , Humans , Kupffer Cells/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Interleukin-13/metabolism , Secretome , Macrophages , Liver Cirrhosis , Killer Cells, Natural/metabolism
9.
Front Immunol ; 15: 1371345, 2024.
Article in English | MEDLINE | ID: mdl-38558810

ABSTRACT

Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αß T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.


Subject(s)
Natural Killer T-Cells , Neuroblastoma , Receptors, Chimeric Antigen , Animals , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use , Neuroblastoma/pathology , Immunotherapy/methods , Killer Cells, Natural/metabolism , Tumor Microenvironment
10.
Article in Chinese | MEDLINE | ID: mdl-38604686

ABSTRACT

OBJECTIVE: To investigate the effect of LAG-3 deficiency (LAG3-/-) on natural killer (NK) cell function and hepatic fibrosis in mice infected with Echinococcus multilocularis. METHODS: C57BL/6 mice, each weighing (20 ± 2) g, were divided into the LAG3-/- and wild type (WT) groups, and each mouse in both groups was inoculated with 3 000 E. multilocularis protoscoleces via the hepatic portal vein. Mouse liver and spleen specimens were collected 12 weeks post-infection, sectioned and stained with sirius red, and the hepatic lesions and fibrosis were observed. Mouse hepatic and splenic lymphocytes were isolated, and flow cytometry was performed to detect the proportions of hepatic and splenic NK cells, the expression of CD44, CD25 and CD69 molecules on NK cell surface, and the secretion of interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), interleukin (IL)-4, IL-10 and IL-17A. RESULTS: Sirius red staining showed widening of inflammatory cell bands and hyperplasia of fibrotic connective tissues around mouse hepatic lesions, as well as increased deposition of collagen fibers in the LAG3-/-group relative to the WT group. Flow cytometry revealed lower proportions of mouse hepatic (6.29% ± 1.06% vs. 11.91% ± 1.85%, P < 0.000 1) and splenic NK cells (4.44% ± 1.22% vs. 5.85% ± 1.10%, P > 0.05) in the LAG3-/- group than in the WT group, and the mean fluorescence intensity of CD44 was higher on the surface of mouse hepatic NK cells in the LAG3-/- group than in the WT group (t = -3.234, P < 0.01), while no significant differences were found in the mean fluorescence intensity of CD25 or CD69 on the surface of mouse hepaticNK cells between the LAG3-/- and WT groups (both P values > 0.05). There were significant differences between the LAG3-/- and WT groups in terms of the percentages of IFN-γ (t = -0.723, P > 0.05), TNF-α (t = -0.659, P > 0.05), IL-4 (t = -0.263, P > 0.05), IL-10 (t = -0.455, P > 0.05) or IL-17A secreted by mouse hepatic NK cells (t = 0.091, P > 0.05), and the percentage of IFN-γ secreted by mouse splenic NK cells was higher in the LAG3-/- group than in the WT group (58.40% ± 1.64% vs. 50.40% ± 4.13%; t = -4.042, P < 0.01); however, there were no significant differences between the two groups in terms of the proportions of TNF-α (t = -1.902, P > 0.05), IL-4 (t = -1.333, P > 0.05), IL-10 (t = -1.356, P > 0.05) or IL-17A secreted by mouse splenic NK cells (t = 0.529, P > 0.05). CONCLUSIONS: During the course of E. multilocularis infections, LAG3-/- promotes high-level secretion of IFN-γ by splenic NK cells, which may participate in the reversal the immune function of NK cells, resulting in aggravation of hepatic fibrosis.


Subject(s)
Echinococcus multilocularis , Interleukin-10 , Animals , Mice , Interleukin-10/metabolism , Interleukin-17/metabolism , Interleukin-17/pharmacology , Interleukin-4/metabolism , Interleukin-4/pharmacology , Echinococcus multilocularis/genetics , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Interferon-gamma/genetics , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Liver Cirrhosis/genetics
11.
Immun Inflamm Dis ; 12(4): e1244, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577997

ABSTRACT

OBJECTIVES: The purpose of this study was to examine the proportion of CD161 on CD56+ natural killer (NK) cells in peripheral blood of primary Sjögren's syndrome (pSS) and investigate its clinical relevance of pSS. METHODS: The proportion of CD56+ NK cells and CD161 on CD56+ NK cells was detected by flow cytometry in 31 pSS patients and 29 healthy controls (HCs). The correlations between the proportion of CD161+CD56+ NK cells and clinical features and disease activity of pSS were further analyzed. Meanwhile, we drew the receiver operating characteristic curve to evaluate the diagnostic value of CD161+CD56+ NK cells in pSS. In addition, we evaluated the differences in the effects of CD161+ cells and CD161- cells in peripheral blood on the function of CD56+ NK cells in 5 pSS patients. RESULTS: The proportion of CD56+ NK cells and CD161+CD56+ NK cells decreased markedly in pSS patients compared to HCs. The correlation analysis showed that the proportion of CD161+CD56+ NK cells negatively correlated with white blood cells, Immunoglobulin A (IgA), IgM, IgG, European League Against Rheumatism Sjogren's Syndrome Patient Reported Index and European League Against Rheumatism Sjogren's Syndrome Disease Activity Index, and positively correlated with complement C4. The proportion of CD161+CD56+ NK cells in pSS patients with decayed tooth, fatigue, arthralgia, skin involvement, primary biliary cirrhosis, interstitial lung disease, anti-SSA/Ro60 positive, anti-SSB positive and high IgG was lower than that in negative patients. Furthermore, compared with inactive patients, the proportion of CD161+CD56+ NK cells decreased obviously in active patients. The area under the curve was 0.7375 (p = .0016), the results indicated that CD161+CD56+ NK cells had certain diagnostic values for pSS. In addition, the proportion of CD86, HLA-DR, Ki67, FasL, TNF-α, and IFN-γ on CD161+CD56+ NK cells was lower than that on CD161-CD56+ NK cells in the peripheral blood of pSS patients. CONCLUSION: This study suggested that the proportion of CD56+ NK cells and CD161+CD56+ NK cells decreased significantly in pSS patients, and the proportion of CD161+CD56+ NK cells negatively associated with the clinical features and disease activity of pSS patients. CD161 expression inhibited the function of CD56+ NK cells in peripheral blood of pSS patients. The CD161+CD56+ NK cells may present as a potential target for therapy and a biomarker of disease activity in pSS.


Subject(s)
Killer Cells, Natural , Sjogren's Syndrome , Humans , Biomarkers , HLA-DR Antigens , Immunoglobulin G , Killer Cells, Natural/metabolism , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/metabolism
12.
Biotechnol J ; 19(3): e2300654, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472089

ABSTRACT

Vigorous ex vivo expansion of NK-92 cells is a pivotal step for clinical adoptive immunotherapy. Interleukin-2 (IL-2) is identified as a key cytokine for NK-92 cells, and it can stimulate cell proliferation after binding to the IL-2 receptor (IL-2R). In this work, the differences in IL-2 consumption and IL-2R expression were investigated between the two culture modes. The results showed that suspension culture favored ex vivo expansion of NK-92 cells compared with static culture. The specific consumption rate of IL-2 in suspension culture was significantly higher than that in static culture. It was further found that the mRNA levels of the two IL-2R subunits remained unchanged in suspension culture, but the proportion of NK-92 cells expressing IL-2Rß was increased, and the fluorescence intensity of IL-2Rß was remarkably enhanced. Meanwhile, the proportion of cells expressing IL-2R receptor complex also increased significantly. Correspondingly, the phosphorylation of STAT5, a pivotal protein in the downstream signaling pathway of IL-2, was up-regulated. Notably, the expression level and colocalization coefficient of related endosomes during IL-2/IL-2R complex endocytosis were markedly elevated, suggesting the enhancement of IL-2 endocytosis. Taken together, these results implied that more IL-2 was needed to support cell growth in suspension culture. Therefore, the culture process was optimized from the perspective of cytokine utilization to further improve the NK-92 cell's expansion ability and function. This study provides valuable insight into the efficient ex vivo expansion of NK-92 cells.


Subject(s)
Interleukin-2 , Killer Cells, Natural , Interleukin-2/metabolism , Killer Cells, Natural/metabolism , Receptors, Interleukin-2/metabolism , Cytokines/metabolism , Cell Membrane
13.
Nat Commun ; 15(1): 1909, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429294

ABSTRACT

Severe heterogeneity within glioblastoma has spurred the notion that disrupting the interplay between multiple elements on immunosuppression is at the core of meaningful anti-tumor responses. T cell immunoreceptor with Ig and ITIM domains (TIGIT) and its glioblastoma-associated antigen, CD155, form a highly immunosuppressive axis in glioblastoma and other solid tumors, yet targeting of TIGIT, a functionally heterogeneous receptor on tumor-infiltrating immune cells, has largely been ineffective as monotherapy, suggesting that disruption of its inhibitory network might be necessary for measurable responses. It is within this context that we show that the usurpation of the TIGIT - CD155 axis via engineered synNotch-mediated activation of induced pluripotent stem cell-derived natural killer (NK) cells promotes transcription factor-mediated activation of a downstream signaling cascade that results in the controlled, localized blockade of CD73 to disrupt purinergic activity otherwise resulting in the production and accumulation of immunosuppressive extracellular adenosine. Such "decoy" receptor engages CD155 binding to TIGIT, but tilts inhibitory TIGIT/CD155 interactions toward activation via downstream synNotch signaling. Usurping activities of TIGIT and CD73 promotes the function of adoptively transferred NK cells into intracranial patient-derived models of glioblastoma and enhances their natural cytolytic functions against this tumor to result in complete tumor eradication. In addition, targeting both receptors, in turn, reprograms the glioblastoma microenvironment via the recruitment of T cells and the downregulation of M2 macrophages. This study demonstrates that TIGIT/CD155 and CD73 are targetable receptor partners in glioblastoma. Our data show that synNotch-engineered pluripotent stem cell-derived NK cells are not only effective mediators of anti-glioblastoma responses within the setting of CD73 and TIGIT/CD155 co-targeting, but represent a powerful allogeneic treatment option for this tumor.


Subject(s)
Glioblastoma , Induced Pluripotent Stem Cells , Killer Cells, Natural , Humans , Glioblastoma/therapy , Glioblastoma/metabolism , Induced Pluripotent Stem Cells/metabolism , Killer Cells, Natural/metabolism , Receptors, Immunologic/metabolism , T-Lymphocytes/metabolism , Tumor Microenvironment , 5'-Nucleotidase/immunology , 5'-Nucleotidase/metabolism
14.
Aging (Albany NY) ; 16(7): 5887-5904, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38517396

ABSTRACT

Acute kidney injury (AKI) is associated with immune cell activation and inflammation. However, the putative pathogenic mechanisms of this injury have not been thoroughly investigated. Natural killer (NK) cells play an important role in immune regulation; however, whether NK cells regulate AKI remains unclear. Cordyceps sinensis (CS), a modern Chinese patented medicine preparation, has been widely used in treating patients with chronic kidney disease (CKD) owing to its anti-inflammatory effects and maintenance of immune homeostasis. Whether 2'-deoxyadenosine, a major active component in CS, can ameliorate renal AKI by regulating immunity, particularly in NK cells, has not been reported. This study is the first to demonstrate how NK cells promote AKI by releasing perforin, interferon-gamma (IFN-γ) and other inflammatory factors in vivo and in vitro. Differential gene expression between AKI and normal tissues was assessed using bioinformatic analyses. Quantitative real-time PCR, western blotting, and immunohistochemical staining were used to detect target protein mRNA and protein expression. Levels of inflammatory factors were measured using enzyme-linked immunosorbent assay. We found the high doses of the 2'-deoxyadenosine treatment significantly alleviated FA-induced renal damage in vivo, and alleviated the NK cells of renal injury by activating the STING/IRF3 pathway to inhibit perforin release in vitro. The results showed that 2'-deoxyadenosine could mitigate AKI by downregulating the activity of NK cells (by decreasing the expressions of perforin and IFN-γ) and inhibiting the stimulator of interferon genes and phosphorylated IFN regulatory factor 3. This may provide valuable evidence supporting the clinical use of CS in treating patients with AKI.


Subject(s)
Acute Kidney Injury , Cordyceps , Interferon Regulatory Factor-3 , Killer Cells, Natural , Membrane Proteins , Perforin , Signal Transduction , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Animals , Cordyceps/chemistry , Perforin/metabolism , Interferon Regulatory Factor-3/metabolism , Mice , Signal Transduction/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Male , Interferon-gamma/metabolism , Mice, Inbred C57BL
15.
Acta Neurol Belg ; 124(2): 603-610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441808

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) and has been known as T-cell mediated. However, the contribution of multiple cell types, notably natural killer (NK) cells, has also been reported. AIM: To quantify circulating total NK cells and its subpopulations, CD56 dim and bright, and to characterize the functional phenotype and IFN-γ and TNF-α production in relapsing-remitting patients treated with IFN-ß and in apparently healthy controls. RESULTS: CD56bright NK cells were found to be the least represented subpopulation. In relapse patients, the frequencies of IFN-γ-producing NK cells and their subpopulations were significantly decreased. In remission patients, CD56dim NK cells expressed high levels of HLA-DR and CD54. CONCLUSION: These results suggest that remission RRMS patients, although in an inactive stage of MS, present circulating NK cells with an activation phenotype, supporting the idea that NK cells may be relevant mediators in the MS pathophysiology.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis, Relapsing-Remitting/metabolism , Multiple Sclerosis/metabolism , Killer Cells, Natural/metabolism , Central Nervous System , Gene Expression
16.
BMC Cancer ; 24(1): 395, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549061

ABSTRACT

BACKGROUND: Although immune cell therapy has long been used for treating solid cancer, its efficacy remains limited. Interferon (IFN)-producing killer dendritic cells (IKDCs) exhibit cytotoxicity and present antigens to relevant cells; thus, they can selectively induce tumor-associated antigen (TAA)-specific CD8 T cells and may be useful in cancer treatment. Various protocols have been used to amplify human IKDCs from peripheral sources, but the complexity of the process has prevented their widespread clinical application. Additionally, the induction of TAA-specific CD8 T cells through the adoptive transfer of IKDCs to immunocompromised patients with cancer may be insufficient. Therefore, we developed a method for generating an immune cell-based regimen, Phyduxon-T, comprising a human IKDC counterpart (Phyduxon) and expanded TAA-specific CD8 T cells. METHODS: Peripheral blood mononuclear cells from ovarian cancer patients were cultured with human interleukin (hIL)-15, hIL-12, and hIL-18 to generate Phyduxon-T. Then, its phenotype, cytotoxicity, and antigen-presenting function were evaluated through flow cytometry using specific monoclonal antibodies. RESULTS: Phyduxon exhibited the characteristics of both natural killer and dendritic cells. This regimen also exhibited cytotoxicity against primary ovarian cancer cells and presented TAAs, thereby inducing TAA-specific CD8 T cells, as evidenced by the expression of 4-1BB and IFN-γ. Notably, the Phyduxon-T manufacturing protocol effectively expanded IFN-γ-producing 4-1BB+ TAA-specific CD8 T cells from peripheral sources; these cells exhibited cytotoxic activities against ovarian cancer cells. CONCLUSIONS: Phyduxon-T, which is a combination of natural killer cells, dendritic cells, and TAA-specific CD8 T cells, may enhance the efficacy of cancer immunotherapy.


Subject(s)
Ovarian Neoplasms , T-Lymphocytes, Cytotoxic , Female , Humans , Interferons/metabolism , Interferon-gamma/metabolism , Leukocytes, Mononuclear/metabolism , Killer Cells, Natural/metabolism , CD8-Positive T-Lymphocytes/metabolism , Antigens, Neoplasm , Ovarian Neoplasms/metabolism , Dendritic Cells
17.
J Immunother Cancer ; 12(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538093

ABSTRACT

BACKGROUND: Choosing treatments for epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) patients with osimertinib resistance is challenging. We evaluated the safety and efficacy of SNK01 (autologous natural killer (NK) cells) in combination with cytotoxic chemotherapy and/or cetuximab (an anti-EGFR monoclonal antibody) in treating EGFR-mutated NSCLC in this non-clinical and phase I/IIa clinical trial. METHODS: We developed a cell line-derived xenograft-humanized mouse model with an osimertinib-resistant lung cancer cell line. The mice were divided into four groups based on treatment (no treatment, cetuximab, SNK01, and combination groups) and treated weekly for 5 weeks. In the clinical study, 12 patients with EGFR-mutated NSCLC who failed prior tyrosine kinase inhibitor (TKI) received SNK01 weekly in combination with gemcitabine/carboplatin (n=6) or cetuximab/gemcitabine/carboplatin (n=6) and dose escalation of SNK01 following the "3+3" design. RESULTS: In the non-clinical study, an increase in NK cells in the blood and enhanced NK cell tumor infiltration were observed in the SNK01 group. The volume of tumor extracted after treatment was the smallest in the combination group. In the clinical study, 12 patients (median age, 60.9 years; all adenocarcinoma cases) received SNK01 weekly for 7-8 weeks (4×109 cells/dose (n=6); 6×109 cells/dose (n=6)). The maximum feasible dose of SNK01 was 6×109 cells/dose without dose-limiting toxicity. Efficacy outcomes showed an objective response rate of 25%, disease control rate of 100%, and median progression-free survival of 143 days. CONCLUSION: SNK01 in combination with cytotoxic chemotherapy, including cetuximab, for EGFR-mutated NSCLC with TKI resistance was safe and exerted a potential antitumor effect. TRIAL REGISTRATION NUMBER: NCT04872634.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Mice , Animals , Middle Aged , Carcinoma, Non-Small-Cell Lung/pathology , Cetuximab/pharmacology , Cetuximab/therapeutic use , Lung Neoplasms/pathology , Carboplatin/therapeutic use , Gemcitabine , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Killer Cells, Natural/metabolism
18.
Helicobacter ; 29(2): e13069, 2024.
Article in English | MEDLINE | ID: mdl-38516860

ABSTRACT

Helicobacter pylori (H. pylori) seems to play causative roles in gastric cancers. H. pylori has also been detected in established gastric cancers. How the presence of H. pylori modulates immune response to the cancer is unclear. The cytotoxicity of natural killer (NK) cells, toward infected or malignant cells, is controlled by the repertoire of activating and inhibitory receptors expressed on their surface. Here, we studied H. pylori-induced changes in the expression of ligands, of activating and inhibitory receptors of NK cells, in the gastric adenocarcinoma AGS cells, and their impacts on NK cell responses. AGS cells lacked or had low surface expression of the class I major histocompatibility complex (MHC-I) molecules HLA-E and HLA-C-ligands of the major NK cell inhibitory receptors NKG2A and killer-cell Ig-like receptor (KIR), respectively. However, AGS cells had high surface expression of ligands of activating receptors DNAM-1 and CD2, and of the adhesion molecules LFA-1. Consistently, AGS cells were sensitive to killing by NK cells despite the expression of inhibitory KIR on NK cells. Furthermore, H. pylori enhanced HLA-C surface expression on AGS cells. H. pylori infection enhanced HLA-C protein synthesis, which could explain H. pylori-induced HLA-C surface expression. H. pylori infection enhanced HLA-C surface expression also in the hepatoma Huh7 and HepG2 cells. Furthermore, H. pylori-induced HLA-C surface expression on AGS cells promoted inhibition of NK cells by KIR, and thereby protected AGS cells from NK cell cytotoxicity. These results suggest that H. pylori enhances HLA-C expression in host cells and protects them from the cytotoxic attack of NK cells expressing HLA-C-specific inhibitory receptors.


Subject(s)
Adenocarcinoma , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Adenocarcinoma/genetics , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Helicobacter Infections/genetics , Helicobacter Infections/pathology , Helicobacter pylori/metabolism , Histocompatibility Antigens Class I/metabolism , HLA-C Antigens/genetics , HLA-C Antigens/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Receptors, Immunologic/metabolism , Receptors, KIR/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology
19.
Med ; 5(4): 335-347.e3, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38521068

ABSTRACT

BACKGROUND: Vaccine-related acute myocarditis is recognized as a rare and specific vaccine complication following mRNA-based COVID-19 vaccinations. The precise mechanisms remain unclear. We hypothesized that natural killer (NK) cells play a central role in its pathogenesis. METHODS: Samples from 60 adolescents with vaccine-related myocarditis were analyzed, including pro-inflammatory cytokines, cardiac troponin T, genotyping, and immunophenotyping of the corresponding activation subsets of NK cells, monocytes, and T cells. Results were compared with samples from 10 vaccinated individuals without myocarditis and 10 healthy controls. FINDINGS: Phenotypically, high levels of serum cytokines pivotal for NK cells, including interleukin-1ß (IL-1ß), interferon α2 (IFN-α2), IL-12, and IFN-γ, were observed in post-vaccination patients with myocarditis, who also had high percentage of CD57+ NK cells in blood, which in turn correlated positively with elevated levels of cardiac troponin T. Abundance of the CD57+ NK subset was particularly prominent in males and in those after the second dose of vaccination. Genotypically, killer cell immunoglobulin-like receptor (KIR) KIR2DL5B(-)/KIR2DS3(+)/KIR2DS5(-)/KIR2DS4del(+) was a risk haplotype, in addition to single-nucleotide polymorphisms related to the NK cell-specific expression quantitative trait loci DNAM-1 and FuT11, which also correlated with cardiac troponin T levels in post-vaccination patients with myocarditis. CONCLUSION: Collectively, these data suggest that NK cell activation by mRNA COVID-19 vaccine contributed to the pathogenesis of acute myocarditis in genetically and epidemiologically vulnerable subjects. FUNDING: This work was funded by the Hong Kong Collaborative Research Fund (CRF) 2020/21 and the CRF Coronavirus and Novel Infectious Diseases Research Exercises (reference no. C7149-20G).


Subject(s)
COVID-19 , Myocarditis , Male , Adolescent , Humans , Myocarditis/etiology , Myocarditis/metabolism , COVID-19 Vaccines/adverse effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Troponin T/metabolism , Interferon-gamma/metabolism , COVID-19/prevention & control , Killer Cells, Natural/metabolism , Cytokines/metabolism , Vaccination/adverse effects , Receptors, KIR2DL5/metabolism
20.
Sci Rep ; 14(1): 2663, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302650

ABSTRACT

Atopic dermatitis (AD) is a complex, multifactorial skin disease, characterized by pruritus and predominant Th2 inflammation. Innate immune cells may play a role in AD development and are composed of granulocytes, macrophages, innate-like T cells, and innate lymphoid cells. This study investigates the phenotypic and functional profile of circulating CLA+ natural killer (NK) cells and its role in the skin-homing to NK cells infiltrated in adults' skin with AD. We selected 44 AD patients and 27 non-AD volunteers for the study. The results showed increased frequencies of both CLA+CD56bright and CLA+CD56dim NK cell populations in the peripheral blood, mainly in severe AD patients. Upon SEB stimulation, we observed an augmented percentage of CLA+CD56dim NK cells expressing CD107a, IFN-γ, IL-10, and TNF, reinforcing the role of staphylococcal enterotoxins in AD pathogenesis. Additionally, we demonstrated increased dermal expression of both NK cell markers NCAM-1/CD56 and pan-granzyme, corroborating the skin-homing, mostly in severe AD. Further studies are necessary to elucidate the potential role of NK cells in the chronification of the inflammatory process in AD skin, as well as their possible relationship with staphylococcal enterotoxins, and as practicable therapeutic targets.


Subject(s)
Dermatitis, Atopic , Adult , Humans , Immunity, Innate , Antigens, Differentiation, T-Lymphocyte/metabolism , Killer Cells, Natural/metabolism , Enterotoxins
SELECTION OF CITATIONS
SEARCH DETAIL
...